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Reverse-transcribing viruses, which synthesize a copy of genomic DNA from an RNA
template, are widespread in animals, plants, algae, and fungi (1, 2). This broad distri-

bution suggests the ancient origin(s) of these viruses, possibly concomitant with the
emergence of eukaryotes (3). Reverse-transcribing viruses include prominent human patho-
gens, such as human immunodeficiency viruses 1 and 2 (HIV-1/2) and hepatitis B virus, as
well as plant pathogens that cause considerable economic losses (4).

The International Committee on Taxonomy of Viruses (ICTV) traditionally classi-
fied reverse-transcribing viruses into five families: Caulimoviridae, Hepadnaviridae,
Metaviridae, Pseudoviridae, and Retroviridae (5). In 2018, the ICTV recognized an
additional family, Belpaoviridae, which contains the genus Semotivirus (previously
included in the Metaviridae family [6]). The infection cycles, nucleic acid types,
genome organizations, and virion morphologies of these viruses are very diverse.
Indeed, reverse-transcribing viruses are distributed between two Baltimore classes
of viruses. Belpaoviruses, metaviruses, pseudoviruses (better known as Bel/Pao,
Ty3/Gypsy, and Ty1/Copia retrotransposons, respectively [1, 7]), and retroviruses
typically encapsidate single-stranded RNA (ssRNA) genomes (Table 1) and frequently
integrate into the host genomes as part of their replication cycles (Baltimore class VI).
In contrast, members of the families Caulimoviridae and Hepadnaviridae, often referred
to as pararetroviruses (8), package circular double-stranded DNA (dsDNA) genomes and
do not actively integrate into host chromosomes (Baltimore class VII). However, capture
of pararetroviral DNA in host genomes, presumably by illegitimate recombination, is
commonplace, particularly in plants, giving rise to the corresponding endogenous
elements (9, 10).

Mechanistic studies of the replication cycles of reverse-transcribing viruses of dif-
ferent families have revealed many similarities, which have been reinforced by com-
parative genomics of the viral reverse transcriptases (RTs), the hallmark enzymes
encoded by all reverse-transcribing viruses. Indeed, phylogenetic analyses support the
monophyly of all viral RTs, excluding those encoded by nonviral retroelements from
both eukaryotes and prokaryotes (11, 12). In addition to sharing RT phylogeny, bel-
paoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses share several
conserved features that hepadnaviruses lack (Table 1). In particular, the polymerase
(Pol) polyproteins of belpaoviruses, metaviruses, pseudoviruses, and retroviruses pos-
sess similar domain architectures. These Pol polyproteins contain an aspartate protease,
which is responsible for the processing of viral polyproteins, and an integrase of the
DDE recombinase superfamily. The genomes of these viruses also share long terminal
repeats (LTRs) (13). Within certain clades, Pol polyproteins of retroviruses and metavi-
ruses share additional features, such as a dUTPase domain (14–16) and the GPY/F
subdomain of the integrase (17, 18). Caulimoviruses also possess a homologous aspar-
tate protease domain in their Pol polyprotein (19) but lack an integrase and LTRs.
However, RT-based phylogenies consistently classify these plant-infecting viruses as a
sister clade of the metaviruses (Fig. 1). This phylogenetic position suggests that among
pararetroviruses, encapsidation of a DNA genome is a homoplasious trait and, there-
fore, is not a reliable criterion for classification. The basal branches of the RT tree are not
resolved and are presented as a multifurcation in Fig. 1. This topology is at least
compatible with placing the Hepadnaviridae clade outside the viral group that includes
belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses.

Belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses share
not only homologous proteins involved in genome replication and polyprotein pro-
cessing but also the two principal protein components of the virions, namely, the
capsid and nucleocapsid proteins/domains (20–22). However, the nucleocapsid domain
appears to be absent in spumaretroviruses (family Retroviridae) (Table 1). In contrast,
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hepadnaviruses encode an unrelated capsid protein (23). These findings suggest that
belpaoviruses, caulimoviruses, metaviruses, pseudoviruses, and retroviruses have evolved
from a common viral ancestor, rather than from distinct capsid-less retrotransposons (20).

Finally, similarities between belpaoviruses, caulimoviruses, metaviruses, pseudovi-
ruses, and retroviruses extend to the mechanism of replication priming. All these
viruses utilize host tRNA molecules as primers for genome replication by reverse
transcription (24), whereas hepadnaviruses use a specific protein priming mechanism
mediated by the polymerase terminal protein domain (25).

Taken together, the common complement of proteins required for genome replication,
polyprotein processing, and virion formation, the topology of the RT phylogenetic tree, and
mechanistic similarities in genome replication present strong evidence that belpaoviruses,
caulimoviruses, metaviruses, pseudoviruses, and retroviruses share an evolutionary origin.
The hepadnaviruses, which typically (i) branch out at the base of the viral RT clade (Fig. 1),
(ii) possess a unique capsid protein, and (iii) employ a distinct replication mechanism,
appear to be more distantly related to all these virus families. In recognition of these
relationships, the ICTV has recently regrouped the families Belpaoviridae, Caulimoviridae,
Metaviridae, Pseudoviridae, and Retroviridae into an order, Ortervirales (Orter, an inversion of
“retro,” which was derived from reverse transcription; -virales, suffix for an order). This
change in taxonomy acknowledges and formalizes the long-proposed evolutionary rela-
tionship among most groups of reverse-transcribing viruses (26). We note that although
hepadnaviruses are not included in the order, they might be unified with other reverse-
transcribing viruses at a higher taxonomic level in the future.
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TABLE 1 Features shared by reverse-transcribing virusesa

Family or subfamily

Presence of Pol:
Presence of
Gag:

Presence of LTR Priming mechanism Genome typeRT-RH Protease Integrase CA/CP NC

Retroviridae
Orthoretrovirinae � � � � � � tRNA ssRNA
Spumaretrovirinae � � � � – � tRNA ssRNA/dsDNAb

Metaviridae � � � � � � tRNA ssRNA
Pseudoviridae � � � � � � tRNA ssRNA
Belpaoviridae � � � � � � tRNA ssRNA
Caulimoviridae � � – � � –c tRNA dsDNA
Hepadnaviridae � – – – – –d TP dsDNA
aAbbreviations: CA/CP, capsid protein; Gag, group-specific antigen; LTR, long terminal repeat; NC, nucleocapsid protein; RH, RNase H; RT, reverse transcriptase; Pol,
polymerase polyprotein; TP, terminal protein.

bMembers of the subfamily Spumaretrovirinae contain both ssRNA and dsDNA in extracellular particles, and reverse transcription occurs during virus assembly and
disassembly.

cIn the genus Petuvirus (Caulimoviridae), an inactivated integrase-like domain and quasi (long)-terminal repeats have been identified (28, 29), suggesting that certain
ancestral elements have been lost during the evolution of caulimoviruses.

dUpstream of the capsid protein gene, hepadnavirus genomes contain a sequence showing similarity to the U5 region of the retroviral LTR (30).
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